

Betriebsanleitung

Control Box

Revisionshistorie

Revision	Datum	Kommentar	Kapitel
01	04.04.12	Neuerstellung	Alle
02	12.08.13	Antriebe; Feldbus; Daten	2.4, 3, 6, 9
03	08.01.19	Firmierung auf ToolDrives GmbH&Co.KG	Alle

Service

Bei technischen Fragen wenden Sie sich an folgende Adresse:

ToolDrives GmbH & Co. KG Königlicher Wald 6 D-33142 Büren

Tel.: +49 2951 70798 50

Email: info@tooldrives.de

Diese Dokumentation ist urheberrechtlich geschützt.

Alle Rechte, auch die der fotomechanischen Wiedergabe, der Vervielfältigung und der Verbreitung mittels besonderer Verfahren (zum Beispiel Datenverarbeitung, Datenträger und Datennetze), auch teilweise, behält sich die **ToolDrives GmbH&Co.KG** vor.

Inhaltliche und technische Änderungen vorbehalten.

Control Box

INHALTSVERZEICHNIS

RE	VISIO	NSHISTORIE	2
SE	RVICE	=	2
1.	ZU I	DIESER ANLEITUNG	6
	1.1	ALLGEMEINES	6
	1.2	SICHERHEITSSYMBOLE	6
2.	SIC	HERHEIT	7
	2.1	ALLGEMEINE HINWEISE	7
	2.2	EG - NIEDERSPANNUNGSRICHTLINIE	7
	2.3	GEFAHREN	
	2.4	BESTIMMUNGSGEMÄßE VERWENDUNG	
	2.5	VERNÜNFTIGERWEISE VORHERSEHBARER FEHLGEBRAUCH	
	2.6 2.7	GEWÄHRLEISTUNG UND HAFTUNG	
	2. <i>1</i> 2.8	WARN- UND SICHERHEITSSCHILDER	
3.		CHREIBUNG DER CONTROL BOX	_
	3.1 3.2	ÜBERSICHT DER CONTROL BOX-KOMPONENTENÜBERSICHT DER CONTROL BOX-ANSCHLÜSSE	
	3.2 3.3	TYPENSCHILD	
	3.4	Typenschlüssel	
	3.5	LIEFERUMFANG	
4.	TRA	NSPORT UND LAGERUNG	15
	4.1	LIEFERUMFANG	15
	4.2	VERPACKUNG	
	4.3	Transport	15
	4.4 L	AGERUNG	15
5.	MOI	NTAGE	16
	5.1	Vorbereitungen	16
	5.2	CONTROL BOX ANBAUEN	
	5.2.		
	5.3	ELEKTRISCHE ANSCHLÜSSE INSTALLIEREN	17
6.	INB	ETRIEBNAHME UND BETRIEB	19
	6.1	STATUS-LED	20
7.	WA	RTUNG UND ENTSORGUNG	21
	7.1	WARTUNGSARBEITEN	21
	7.1.		
		2 Kontrolle der Anzugsdrehmomente	
		3 Reinigung	
	7.2 7.2	INBETRIEBNAHME NACH EINER WARTUNG	
	7.3 7.4	WARTUNGSPLAN	
8.		PRUNGEN	
o. 9.		HANG	
•			
	9.1	TECHNISCHE DATEN	24

Zu dieser Anleitung

9.1.1 Control Box	22
9.1.2 Leitungslängen	24
9.1.3 Zuleitungen für Control Box	
9.1.4 Leitungsbelegung (Steuerleitung Digital I/O)	
9.2 DRIVE POWER LINK DPL (MOTORLEITUNG)	
9.2.1 Aufbau	
9.2.2 Eigenschaften	
9.2.3 Hinweise	
9.2.4 Technische Daten Drive Power Link	
9.3 ETHERCAT [®] /PROFINET [®]	28
9.4 ZULEITUNG FÜR CONTROL BOX	29
9.5 ABMAßE / ANBAUMAßE CONTROL BOX	30
9.6 KONFIGURATIONSVARIANTEN	31
9.6.1 Darstellung der Blockschaltbilder	
9.6.2 Konfigurationsvariante: Einzelne Control Box	
9.6.3 Konfigurationsvariante: Zwei Control Boxen	
9.6.4 Konfigurationsvariante: Drei Control Boxen	32
9.6.5 Konfigurationsvariante: Vier Control Boxen	
9.6.6 Konfigurationsvariante: Fünf Control Boxen	32
9.6.7 Konfigurationsvariante: Sechs Control Boxen	
9.6.8 Konfigurationsvariante: Sieben Control Boxen	36
9.6.9 Konfigurationsvariante: Acht Control Boxen	37
9.7 DIGITALE STEUERUNG	38
9.7.1 Übersicht der Steuerleitungen	38
9.7.2 Digitale Signaleingänge	
9.8 STEUERUNG ÜBER FELDBUS (ETHERCAT® ODER PROFINI	
9.8.1 Zu sendende System-Daten	•
9.8.2 Zu empfangende System-Daten	
9.9 DATEN DER CONTROL BOX	
9.9.1 Zu sendende Daten	
9.9.2 Zu empfangende Daten	
9.10 Antriebsbezogene Daten	45
9.10.1 Zu sendende Daten	45
9.10.2 Zu empfangende Daten	46
9.11 MÖGLICHKEITEN ZUR BEDIENUNG	
9.11.1 Fehleranzeigen	
9.12 SCHNITTSTELLEN	
9.12.1 Digitale Steuerung (I/O)	
9.12.2 EtherCAT [®] Feldbus	
9.12.3 PROFINET [®] Feldbus	
9.13 BEGRIFFE UND ABKÜRZUNGEN	
Q 14 KONEODMITÄTSEDKI ÄDLING	53

Control Box

Tabellenverzeichnis

Tbl- 1: Warn- und Sicherheitsschilder an der Control Box	10
Tbl- 2: Übersicht der Control Box-Komponenten	12
Tbl- 3: Übersicht der Control Box-Anschlüsse	13
Tbl- 4: Typenschild Fehler! 1	
Tbl- 5: Status-LED, Anzeige der Betriebszustände der Control Box	20
Tbl- 6: Wartungsplan	21
Tbl- 7: Störungen	23
Tbl- 8: Technische Daten Control Box	24
Tbl- 9: Leitungslängen	
Tbl- 10: Zuleitungen Control Box	
Tbl- 11: Leitungsbelegung, Steuerleitung 25-polig Digital I/O	26
Tbl- 12: Leitungsbelegung, Steuerleitung 18-polig Digital I/O	26
Tbl- 13: Technische Daten Drive Power Link	28
Tbl- 14: EtherCat®/PROFINET®	28
Tbl- 15: Zuleitung für Control Box	29
Tbl- 16: Abmaße (mm) Control Box	
Tbl- 17: Abkürzungen Blockschaltbild	
Tbl- 18: Linienarten Blockschaltbild	
Tbl- 19: Eigenschaften der Steuersignale	38
Tbl- 20: Übersicht der Steuerleitungen	
Tbl- 21: Digitale Signaleingänge	
Tbl- 22: Drehzahlvorgaben	
Tbl- 23: Steuersignale	
Tbl- 24: Senderichtung	
Tbl- 25: Datentypen	
Tbl- 26: Beschreibung zu sendende System-Daten	
Tbl- 27: Beschreibung empfangende System-Daten	
Tbl- 28: Antriebsdrehzahl der Bearbeitungsmodule	
Tbl- 29: Beschreibung zu sendende Control Box-Daten	
Tbl- 30: Beschreibung zu empfangenden Control Box -Daten	
Tbl- 31: Antriebsbezogende Sendedaten	
Tbl- 32: Antriebsbezogende Empfangsdaten	
Tbl- 33: Beschreibung Fehlercodes DSC	
Tbl- 34: Fehlercode-Manager auf der Konfigurationsoberfläche	
Tbl- 35: Eingänge und Ausgänge aus Sicht der Control Box	
Tbl- 36: Eingangssignale EtherCAT® Feldbus	
Tbl- 37: Ausgangssignale EtherCAT [®] Feldbus	
Tbl- 38: Eingangssignale PROFINET [®] Feldbus	
This 30. Auggangssignala PROFINET® Faldbus	51

1. Zu dieser Anleitung

1.1 Allgemeines

- ▶ Diese Anleitung enthält notwendige Informationen, um die Control Box sicher zu verwenden.
- ► Falls dieser Anleitung Ergänzungsblätter (z.B. für Sonderanwendungen) beigefügt sind, sind die darin enthaltenen Angaben gültig. Widersprechende Angaben in dieser Anleitung werden somit ungültig.
- ▶ Der Betreiber muss gewährleisten, dass diese Anleitung von allen Personen, die mit Installation, Betrieb oder Wartung der Control Box beauftragt werden, gelesen und verstanden wurde.
- Bewahren Sie die Anleitung griffbereit in der Nähe der Control Box auf.

Das Original dieser Anleitung wurde in Deutsch erstellt, alle anderen Sprachversionen sind Übersetzungen dieser Anleitung.

1.2 Sicherheitssymbole

Folgende Sicherheitssymbole werden verwendet, um Sie auf Gefahren, Verbote und wichtige Informationen hinzuweisen:

Gefahr!

Gefahr von Personenschäden durch gefährliche elektrische Spannung.

Hinweis auf unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht entsprechende Maßnahmen getroffen werden.

Gefahr!

Gefahr von Personenschäden durch allgemeine

Gefahrenquelle. Hinweis auf eine unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht entsprechende Maßnahmen getroffen werden.

Stop!

Gefahr von Sachschäden.

Hinweis auf mögliche Gefahr, die Sachschäden zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.

Stop!

Schwebende Lasten können herabfallen.

Hinweis auf mögliche Gefahr, die Personen- und Sachschäden zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.

Heiße Oberfläche

Gefahr von Verbrennungen.

Hinweis auf mögliche Verbrennungen bei Berührung mit bloßer Hand.

Information

Wichtige Informationen.

Hinweise für die störungsfreie Funktion und nützliche Tipps.

2. Sicherheit

2.1 Allgemeine Hinweise

- ▶ Diese Anleitung, insbesondere die Sicherheitshinweise und die für den Einsatzort gültigen Regeln und Vorschriften, sind von allen Personen, die mit der Control Box arbeiten, zu befolgen.
- ➤ Zusätzlich zu den in dieser Anleitung genannten Sicherheitshinweisen sind die allgemeingültigen gesetzlichen und sonstigen Regeln und Vorschriften zur Unfallverhütung (z.B. persönliche Schutzausrüstung) und zum Umweltschutz zu befolgen

2.2 EG - Niederspannungsrichtlinie

Die Control Box wurde in Übereinstimmung mit der Richtlinie 2006/95/EG gebaut. Die elektrische Installation ist nach den einschlägigen Vorschriften durchzuführen (z.B. Leitungsquerschnitte, Absicherung).

Die Einhaltung der Forderungen für eine Gesamtanlage liegt in der Verantwortung des Herstellers der Gesamtanlage.

Die Konformitätserklärung finden sie im Anhang Kap. 9.14.

2.3 Gefahren

Die Control Box ist nach dem aktuellen Stand der Technik und den anerkannten sicherheitstechnischen Regeln entwickelt und gebaut. Es darf nur im sicherheitstechnisch einwandfreien Zustand eingesetzt und betrieben werden.

Informieren Sie sich vor Beginn der Arbeiten über die allgemeinen Sicherheitshinweise (siehe Kapitel 2.7 "Allgemeine Sicherheitshinweise").

Nur Personen, die diese Anleitung gelesen und verstanden haben, dürfen Arbeiten an der Control Box durchführen. Arbeiten an der geöffneten Control Box dürfen nur von einer durch **ToolDrives GmbH&Co.KG** geschulten Elektrofachkraft durchgeführt werden.

2.4 Bestimmungsgemäße Verwendung

Die Control Box

- ▶ ist ausschließlich für den Einsatz in gewerblichen Anlagen in geschlossenen Räumen bestimmt.
- eignet sich zum ortsfesten An- oder Einbau sowie an Maschinen mit bewegten Achsen (maximale Beschleunigung: 1 g; siehe auch Kapitel 5.2 "Control Box anbauen" und 9.1 "Technische Daten").
- ist geeignet zum Steuern und Überwachen von permanent erregten Synchronmotoren vom Typ Basic Line (Bxxxxxx) und Combi Line (Cxxxxxx), im Weiteren "Antriebe" genannt.
- ist ausschließlich innerhalb der Leistungsgrenzen zu betreiben (siehe Kapitel 9.1 "Technische Daten").

Revision: 03

- muss durch den Hersteller der Gesamtanlage in das Not-Halt-Konzept der Gesamtanlage integriert werden. Bei Not-Halt-Situationen, Störungen der Stromversorgung und/ oder Schäden an der elektrischen Ausrüstung muss die Control Box
- sofort spannungsfrei geschaltet werden.
- gegen unkontrolliertes Wiedereinschalten gesichert werden.
- gegen unkontrollierten Nachlauf gesichert werden.

2.5 Vernünftigerweise vorhersehbarer Fehlgebrauch

- ▶ Jeder Gebrauch, der die maximal zulässigen Werte in den technischen Daten, siehe Kapitel 9.1 "Technische Daten" überschreitet, gilt als nicht bestimmungsgemäß und ist somit verboten.
- ▶ Die Control Box darf nicht in explosionsgefährdeten Bereichen betrieben werden.
- Für den gefahrlosen Betrieb: notwendige Schutzeinrichtungen müssen vorhanden, ordnungsgemäß installiert und voll funktionsfähig sein. Sie dürfen nicht entfernt, verändert, umgangen oder unwirksam gemacht werden.

2.6 Gewährleistung und Haftung

Gewährleistungs- und Haftungsansprüche bei Personen- o. Sachschäden sind ausgeschlossen, bei:

- Nichtbeachtung der Hinweise für Transport und Lagerung;
- ▶ nicht bestimmungsgemäßer Verwendung (Fehlgebrauch);
- unsachgemäß oder nicht ausgeführten Wartungs- oder Reparaturarbeiten;
- Öffnen der Control Box durch nicht qualifiziertes Personal (siehe Kapitel 2.3 "Personal").;
- unsachgemäßer Montage / Demontage oder unsachgemäßem Betrieb;
- Betrieb der Control Box mit defekten Schutzeinrichtungen und -vorrichtungen;
- Betrieb eines stark verschmutzten Control Box;
- Änderungen oder Umbauten, die ohne die schriftliche Genehmigung der ToolDrives GmbH&Co.KG ausgeführt wurden.

2.7 Allgemeine Sicherheitshinweise

Gefahr!

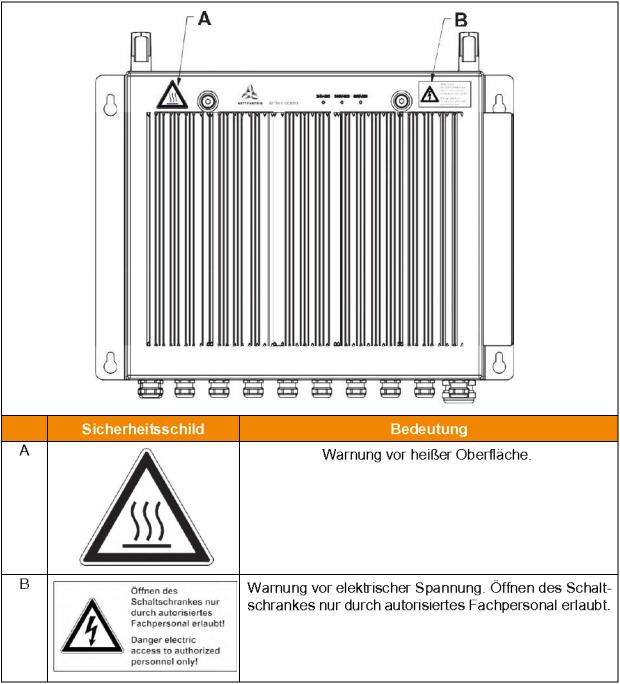
Fehlerhafte Elektroanschlüsse oder nicht zugelassene spannungsführende Bauteile führen zu schweren Verletzungen bis hin zum Tod.

- Lassen Sie alle elektrischen Anschlussarbeiten nur von Fachpersonal durchführen.
- Tauschen Sie beschädigte Kabel oder Stecker sofort aus.

Gefahr!

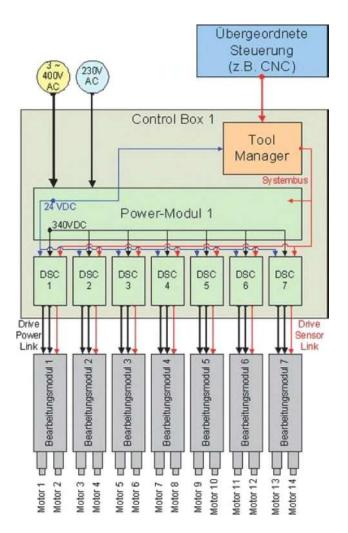
Lose oder überlastete Schraubverbindungen können schwere Verletzungen bis hin zum Tod verursachen und/oder erheblichen Sachschaden herbeiführen.

- Montieren und prüfen Sie alle Schraubverbindungen zur Befestigung der Control Box. Verwenden Sie passende Befestigungsschrauben und falls notwendig zusätzlich erforderliche Montageelemente (z.B. Dübel) mit ausreichender Festigkeit. Befestigungsschrauben und Montageelemente sind Heiße Control Box kann schwere Verbrennungen verursachen.
- Berühren Sie die Control Box nur mit Schutzhandschuhen oder nach längerer Ausschaltzeit.



Heiße Oberfläche

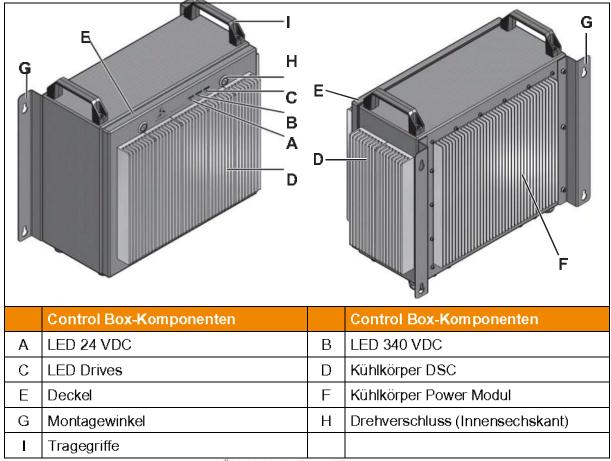
2.8 Warn- und Sicherheitsschilder


An der Control Box befinden sich Warn- und Sicherheitsschilder, die vor heißen Oberflächen und elektrischer Spannung warnen sowie der Hinweis: "Öffnen des Schaltschrankes nur durch autorisiertes Fachpersonal erlaubt!". Diese Schilder dürfen nicht entfernt werden. Fehlende oder unleserliche Schilder müssen durch den Betreiber ersetzt werden.

Tbl- 1: Warn- und Sicherheitsschilder an der Control Box

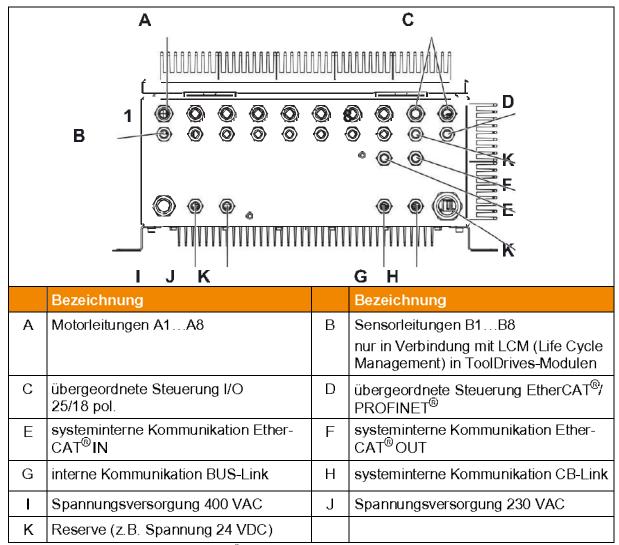
3. Beschreibung der Control Box

Die Control Box, eine kompakte Schaltschrankeinheit, vereinigt komplexe Elektronik- und Softwarekomponenten auf kleinstem Raum miteinander. Mit einer Control Box können bis zu 14 Antriebe einzeln betrieben werden. Beim Einsatz von mehr als 14 Antrieben kann das System durch weitere Control Boxen erweitert werden.


Folgende Möglichkeiten zur Ansteuerung der Antriebe (durch übergeordnete Steuerung) bestehen:

- EtherCAT®
- PROFINET®
- digitale Ein- und Ausgänge (Digital I/O)

Für die Control Box sind verschiedene Konfigurationen möglich (siehe Kapitel 9.6 "Konfigurationsvarianten").

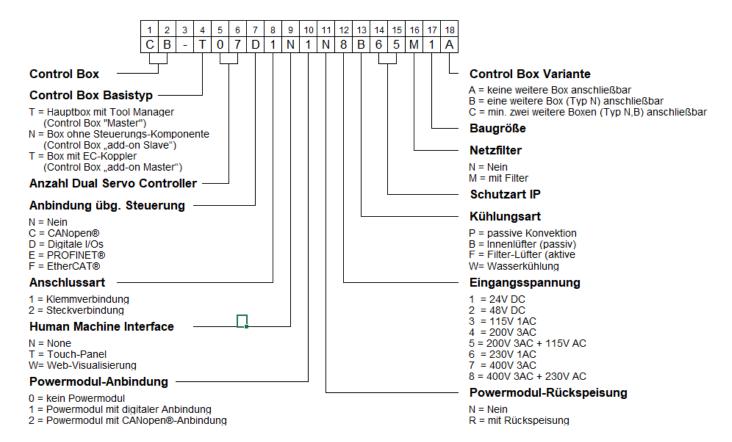

3.1 Übersicht der Control Box-Komponenten

Tbl- 2: Übersicht der Control Box-Komponenten

3.2 Übersicht der Control Box-Anschlüsse

Tbl- 3: Übersicht der Control Box-Anschlüsse

3.3 Typenschild


Ein Typenschild ist an der Control Box angebracht.

	Typenschild			Bezeichnung	
				Α	Typenschlüssel (siehe Kapitel 3.4 "Typenschlüssel")
	ToolDrives	CE		В	Seriennummer
	Intelligent services for smart processes	- 59964 Medebach		С	Versorgungsspannung
A-	Type:	Total service		D	Elektrische Leistung
B-	Serial No.: xxxxxxx	AC: 4001xxxx	G	Е	Schutzklasse
C-	Voltage U [V]: 3x400 AC/1x230 AC Power P [W]: 6300	Current I [A]: 9,1/0,3 Frequency f [Hz]: 50	-H -H	F	Herstelleradresse
E-	Protection class: IP 65	Trequency i preji so	-	G	Artikelcode
F-				Н	Stromstärke
				ı	Frequenz

Tbl- 4: Typenschild

3.4 Typenschlüssel

3.5 Lieferumfang

Zum Lieferumfang gehören:

- Control Box inklusive Versorgungs-, Motor- und Steuerleitungen
- elektrischer Anschlussplan
- Montagezeichnung (Anbaumaße)
- Betriebsanleitung

4. Transport und Lagerung

4.1 Lieferumfang

Prüfen Sie sofort nach Lieferung die Vollständigkeit der Lieferung anhand des Lieferscheins. Fehlende Teile oder Schäden sind sofort dem Spediteur, der Versicherung oder der **ToolDrives GmbH&Co.KG** schriftlich mitzuteilen.

4.2 Verpackung

Die Control Box wird in Kartons und auf Palette verpackt angeliefert.

Entsorgen Sie die Verpackungsmaterialien an den dafür vorgesehenen Entsorgungsstellen. Beachten Sie bei der Entsorgung die gültigen nationalen Vorschriften.

4.3 Transport

Stop!

Schwebende Lasten können herabfallen und schwere Verletzungen bis hin zum Tod verursachen.

• Halten Sie sich nie unter schwebenden Lasten auf.

Information

Harte Stöße, z.B. durch Herabfallen oder zu hartes Absetzen, können die Control Box beschädigen.

- Transportieren Sie die Control Box mit entsprechender Sorgfalt und vermeiden Sie harte Stöße.
- Setzen Sie die Control Box vorsichtig ab.
- Verwenden Sie geeignete Hebezeuge.

Sollte ein Transport mittels Hebezeuge nicht möglich sein, dann die Control Box mit zwei Personen an den hierfür vorgesehenen Tragegriffen tragen.

Gewichtsangaben siehe Kapitel 9.1 "Technische DatenLagerung

4.4 Lagerung

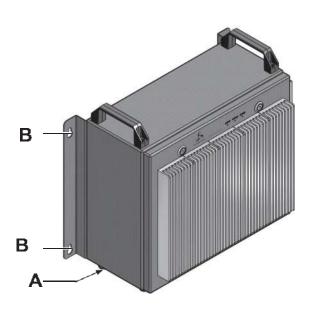
Lagern Sie die Control Box in horizontaler Position (liegend auf Montagewinkeln) und trockener Umgebung bei einer Temperatur von +5 °C bis +60 °C in der Originalverpackung (siehe auch Kapitel 9.1 "Technische Daten"). Lagern Sie die Control Box maximal 2 Jahre.

Für die Lagerlogistik empfehlen wir Ihnen das "first in – first out" Prinzip.

Montage

Informieren Sie sich vor Beginn der Arbeiten über die allgemeinen Sicherheitshinweise (siehe Kapitel 2.7 "Allgemeine Sicherheitshinweise").

5.1 Vorbereitungen



Information

Druckluft kann die Dichtungen der Control Box beschädigen

- Verwenden Sie für die Reinigung der Control Box keine Druckluft.
- Prüfen Sie alle Steckverbindungen und Leitungen zusätzlich auf Beschädigung und Fremdkörper

5.2 Control Box anbauen

- Montieren Sie die Control Box so, dass die Leitungen (A) für die Antriebe nach unten wegführen.
- Positionieren Sie die Control Box an geeigneter Stelle unter Gewährleistung ausreichender Wärmeabfuhr.
- Das Gehäuse und die Kühlkörper der Control Box geben Wärme ab. Zur Sicherstellung ausreichender Konvektion muss ein Mindestabstand von 41 mm zur Außenkontur des Gehäuses gewährleistet sein.
 - ① Beachten Sie beim Anbau der Control Box die maximalen Leitungslängen (siehe Kapitel 9.1.2 "Leitungslängen").
- Befestigen Sie die Control Box mit Befestigungsschrauben über die Durchgangsbohrungen (B).

5.2.1 Weitere Control Boxen anbauen

- Montieren Sie weitere Control Boxen so, dass die Leitungen für die Antriebe nach unten wegführen.
- Positionieren Sie die Control Box an geeigneter Stelle unter Gewährleistung ausreichender Wärmeabfuhr.
- Halten Sie bei einer Montage nebeneinander einen Mindestabstand von 82 mm ein.
- Halten Sie bei einer Montage untereinander einen Mindestabstand von 300 mm ein.
 - ① Beachten Sie beim Anbau der Control Box die maximalen Leitungslängen (siehe Kapitel 9.1.2 "Leitungslängen").

5.3 Elektrische Anschlüsse installieren

Gefahr!

Spannungsführende Teile führen bei Berührung zu Stromschlägen, die schwere Verletzungen bis hin zum Tod verursachen.

- Beachten Sie vor den elektrischen Installationsarbeiten die fünf Sicherheitsregeln der Elektrotechnik:
 - **1** Freischalten.
 - **2** Gegen Wiedereinschalten sichern.
 - **3** Spannungsfreiheit feststellen.
 - 4 Erden und kurzschließen.
 - **5** Benachbarte und spannungsführende Teile abdecken.

Gefahr!

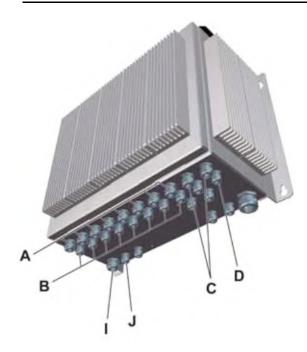
Elektroarbeiten bei Feuchtigkeit können zu Stromschlägen führen, die schwere Verletzungen bis hin zum Tod verursachen.

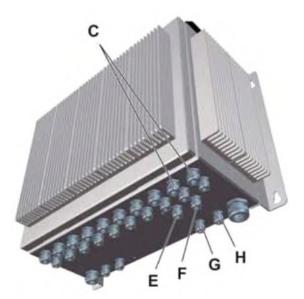
• Führen Sie die Elektromontage nur in trockenen Räumen aus.

Information

Die Leitungen der Control Boxen so verlegen, dass ein minimaler Biegeradius von 10 x Außendurchmesser eingehalten wird.

Die Leitungen dürfen auf einer Länge von 1 m um maximal ±30° tordiert werden.




Information

Die Leitungen aller Control Boxen dürfen nicht verlängert werden.

① Leitungslängen siehe Kapitel 9.1.2 "Leitungslängen", Tabelle "Tbl-9".

- Verbinden Sie folgende Anschlüsse der Control Box mit der Anlage:
- Spannungsversorgung (I) 3 x 400 VAC/N/PE (über Not-Halt geschaltet, siehe Kapitel 2.4 "Bestimmungsgemäße Verwendung").
- Spannungsversorgung (J) 230 VAC/N/PE (nicht über Not-Halt geschaltet).
- Steuerleitungen Digital I/O (C) bzw. EtherCAT®/ PROFINET® (D) an die übergeordnete Steuerung anschließen
- Die Leitungsbelegung finden Sie im Kapitel 9.1.4 "Leitungsbelegung (Steuerleitung Digital I/O)".
- Motorleitungen (A) an die Antriebe anschließen.
- Bei ToolDrives-Modulen mit integrierter Ventiltechnik bzw. LCM-Elektronik:
- Sensorleitungen (B) an die Antriebe anschließen.
- Verbinden Sie die Control Boxen entsprechend der Konfigurationsvariante untereinander:
- Systemleitung CB-Link (H).
- Systembus BUS-Link (G).
- Bei Konfigurationsvarianten mit mehr als 2 Control Boxen:
- Control Boxen mit Steuerleitungen Digital I/O (C) bzw. EtherCAT[®]/PROFINET[®] (E, F) miteinander verbinden (siehe Konfigurationsvarianten in Kapitel 9.6 "Konfigurationsvarianten").
- ① Die Leitungsbelegung finden Sie im Kapitel
 9.1.4 "Leitungsbelegung (Steuerleitung Digital I/O)".

Revision: 03

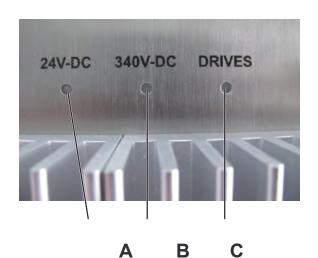
6. Inbetriebnahme und Betrieb

• Informieren Sie sich vor Beginn der Arbeiten über die allgemeinen Sicherheitshinweise (siehe Kapitel 2.7 "Allgemeine Sicherheitshinweise").

Information

Unsachgemäßes Betreiben kann zu einer Beschädigung der Control Box führen.

- Die Control Box ausschließlich innerhalb der Leistungsgrenzen betreiben (siehe Kapitel 9.1 "Technische Daten").
- Bei anderen Einsatzbedingungen nehmen Sie Kontakt mit unserem Customer Service auf.
- Verwenden Sie die Control Box nur in einer sauberen und trockenen Umgebung.
- Betreiben Sie die Control Box nur fest montiert.
- Prüfen Sie, ob alle Stecker fest angebracht sind.


Information

Zu geringe Drehzahl kann zur Beschädigung der Antriebe und Werkzeuge führen.

- Stellen Sie sicher, dass die Antriebe [Typ Basic Line (Bxxxxxx) bzw. Combi Line (Cxxxxxx)] gestartet sind, bevor die eingespannten Werkzeuge mittels Vorschubbewegung in das Material schneiden.
- Beachten Sie bei der Programmierung der übergeordneten (CNC-) Steuerung eine Hochlaufzeit der Antriebe von mindestens 2 Sekunden.
 - ① Rechtzeitiges Hochfahren der Antriebe während der Verfahrzeiten erspart Verweilzeiten vor dem Bearbeitungsschritt.

6.1 Status-LED

Die Control Box ist betriebsbereit, wenn die Status-LEDs (A - C) grün leuchten.

LED	Anzeige	Funktion
24 VDC	Aus	System aus
	Grün	Steuerspannung ein
	blinkt	Temperatur innerhalb der Control Box zu hoch
340 VDC	Aus	System aus
	Grün	Versorgungsspannung Dual Servo Controller (DSC) an; Freigabe für Power Modul erteilt
	Gelb	Versorgungsspannung Dual Servo Controller (DSC) an; Freigabe für Power Modul nicht erteilt
	Rot	Fehler am Power Modul
DRIVES	Aus	System aus
	Grün	alle Antriebe ohne Fehler
	Rot	Fehler an mindestens einem Antrieb

Tbl- 5: Status-LED, Anzeige der Betriebszustände der Control Box

7. Wartung und Entsorgung

 Informieren Sie sich vor Beginn der Arbeiten über die allgemeinen Sicherheitshinweise (siehe Kapitel 2.7 "Allgemeine Sicherheitshinweise").

Unsachgemäße Wartungsarbeiten können schwere Verletzungen bis hin zum Tod sowie Beschädigung der Control Box zur Folge haben.

- Öffnen der Control Box nur durch geschulte Elektrofachkräfte.
- Reinigen Sie die Control Box nicht mit Druckluft.

7.1 Wartungsarbeiten

 Aufgrund der geschlossenen Bauweise ist die Control Box wartungsarm. Eine regelmäßige Sicht- kontrolle hilft, um Schäden zu vermeiden.

7.1.1 Sichtkontrolle

- Prüfen Sie die Control Box und alle Leitungen auf äußerliche Schäden.
- Prüfen Sie, ob das Typenschild (siehe Kapitel 3.3 "Typenschild") und alle Sicherheitsschilder (siehe Kapitel 2.8 "Warn- und Sicherheitsschilder") vorhanden und Iesbar sind.

7.1.2 Kontrolle der Anzugsdrehmomente

 Kontrollieren Sie die Anzugsdrehmomente der Befestigungsschrauben an der Control Box (Befestigungsschrauben sind nicht Bestandteil des Lieferumfanges).

7.1.3 Reinigung

 Reinigen Sie die Control Box äußerlich mit einem sauberen und fusselfreien Tuch. Entfernen Sie regelmäßig mit einer weichen Bürste den Staub und Schmutz von den Kühlkörpern.

7.2 Inbetriebnahme nach einer Wartung

- Reinigen Sie die Control Box äußerlich.
- Bauen Sie alle Sicherheitsvorrichtungen an.

7.3 Wartungsplan

Wartungsarbeiten	Vor Inbe- triebnahme	Nach 500 Be- triebsstunden oder 3 Monaten	Alle 3 Monate	Jährlich
Sichtkontrolle	Х	Х	Х	
Kontrolle der Anzugs- drehmomente	Х	Х		Х
Reinigung	Х	Х	Х	

Tbl- 6: Wartungsplan

7.4 Entsorgung

• Ergänzende Informationen zur Demontage und zur Entsorgung der Control Box erhalten Sie von unserem Customer Service.

Gefahr!

Umweltverschmutzung!

- Austauschteile, Betriebs- und Hilfsstoffe sicher und umweltschonend entsorgen.
- Verpackungsmaterialien vorschriftsmäßig entsorgen.
- Entsorgen Sie die Control Box an den dafür vorgesehenen Entsorgungsstellen.
 - ① Beachten Sie bei der Entsorgung die gültigen nationalen Vorschriften.

8. Störungen

Information

Ein verändertes Betriebsverhalten kann Anzeichen für eine bereits bestehende Beschädigung der Control Box sein, bzw. eine Beschädigung der Control Box verursachen.

• Nehmen Sie die Control Box erst nach Beseitigung der Fehlerursache wieder in Betrieb.

Das Beheben von Störungen darf nur von dafür ausgebildetem Fachpersonal durchgeführt werden.

Fehleranzeige	mögliche Fehlerursache	Fehlerbehebung
LED 24 VDC blinkt grün/rot	Temperatur innerhalb der Control Box zu hoch.	Sorgen Sie für eine ausreichende Kühlung und Wärmeabfuhr.
		Überprüfen Sie die Kühlkörper auf Verunrei- nigungen und reinigen Sie diese gegebenenfalls.
		Betriebsparameter (siehe Kapitel 9.1.1 "Control Box") beachten.
LED 340 VDC leuchtet gelb	Freigabe für Power Modul nicht erteilt.	Freigabe über übergeordnete Steuerung erteilen.
		Überprüfen Sie die Steuer- leitung Digital I/O bzw. EtherCAT [®] -/PROFINET [®] - Leitung.
LED 340 VDC leuchtet rot	Fehler am Power Modul.	Überprüfen Sie die 400 V Zu- leitung.
LED 340 VDC blinkt rot	Diverse (Überlastung etc.).	Achtung! Customer Service kontaktieren.
LED DRIVES leuchtet rot	Fehler an mindestens einem Antrieb.	Überprüfen Sie die Antriebe und Motorleitungen (Verschleiß, Bruch, Klemmen etc.).

Tbl- 7: Störungen

Revision: 03

9. Anhang

9.1 Technische Daten

9.1.1 Control Box

Technische Daten Control Box					
Länge	mm	562			
Breite	mm	29	90		
Höhe	mm	49	93		
max. Gewicht (ohne Anschlussleitung)	kg	35 (konfigurat	ionsabhängig)		
Betriebs- und Umge	bungsbe	edingungen			
Versorgungsspannung U	V	3 x 400 AC	1 x 230 AC		
Nennstrom I	Α	9,1 0,3			
Frequenz f	Hz	50			
Ausgangsleistung max. P	W	6300			
Umgebungstemperatur im Betrieb	°C	+5 bis +35			
Umgebungstemperatur bei Lagerung	°C	+5 bis +60			
Relative Luftfeuchtigkeit rF	%	< 85, nicht kondensierend			
Einsatzhöhe über NN	m	≤ 1000			
Betriebsart nach DIN EN 60034-1 (VDE 0530-1)		S3 - 40%, G 0,5: Gleichzeitigkeitsbetrieb			
Schutzart		IP65			
Schwingungen (EN 60068-2-6); Frequenz f	Hz	10 bis 150			
Beschleunigung	g	1			

Tbl-8: Technische Daten Control Box

9.1.2 Leitungslängen

Leitung		Länge (konfigurationsabhängig)
Steuerleitung (Digital I/O)	m	3/5/10/15
EtherCAT®/PROFINET®	m	3/5/10/15
CB-Link: Steuerleitung CB 1 zu CB 2	m	3/5/10
Drive Power Link DPL	m	3/5/10/15
Drive Sensor Link DSL	m	3/5/10/15
BUS-Link: Systembus CB 1 zu CB 2	m	3/5/10

Tbl- 9: Leitungslängen

de-25

9.1.3 Zuleitungen für Control Box

Bezeichnung Ader-Nummer				
Zuleitung 3x1,0 mm ² Steuerspannung (kein Not-Halt) 1 x 230 VAC				
L1	1			
N	2			
PE	grün/gelb			
Zuleitung 5x2,5 mm ² Last-Versorgung (zwingend über Not-Halt) 3 x 400 VAC				
L1	1			
L2	2			
L3	3			
N	4			
PE grün/gelb				

Tbl- 10: Zuleitungen Control Box

9.1.4 Leitungsbelegung (Steuerleitung Digital I/O)

Bezeichnung	Aderfarbe	Kürzel	Pin			
Leitung 25–polig						
GND	weiß	ws	1			
RESERVE	braun	bn	2			
EIN/AUS Antrieb 1	grün	gn	3			
EIN/AUS Antrieb 2	gelb	ge	4			
EIN/AUS Antrieb 3	grau	gr	5			
EIN/AUS Antrieb 4	rosa	rs	6			
EIN/AUS Antrieb 5	blau	bl	7			
EIN/AUS Antrieb 6	rot	rt	8			
EIN/AUS Antrieb 7	schwarz	sw	9			
EIN/AUS Antrieb 8	violett	vi	10			
EIN/AUS Antrieb 9	grau-rosa	gr-rs	11			
EIN/AUS Antrieb 10	rot-blau	rt-bl	12			
EIN/AUS Antrieb 11	weiß-grün	ws-gn	13			
EIN/AUS Antrieb 12	braun-grün	bn-gn	14			
EIN/AUS Antrieb 13	weiß-gelb	ws-ge	15			
EIN/AUS Antrieb 14	gelb-braun	ge-bn	16			
Freigabe (PM startet Spannungsrege- lung für Zwischenkreis)	weiß-grau	ws-gr	17			
Fehler-Reset	grau-braun	gr-bn	18			
Drehzahlvorwahl BIT 1	weiß-rosa	ws-rs	19			

Drehzahlvorwahl BIT 2	rosa-braun	rs-bn	20
Drehzahlvorwahl BIT 3	weiß-blau	ws-bl	21
Drehzahlvorwahl BIT 4	braun-blau	bn-bl	22
BEREIT	weiß-rot	ws-rt	23
(SPS-Programm hochgefahren usw.)			
Sammelfehler	braun-rot	bn-rt	24
RESERVE	weiß-schwarz	ws-sw	25

Tbl- 11: Leitungsbelegung, Steuerleitung 25-polig Digital I/O

Bezeichnung	Aderfarbe	Kürzel	Pin
Le	itung 18–polig		
GND	weiß	ws	1
RESERVE	braun	bn	2
EIN/AUS Antrieb 15	grün	gn	3
EIN/AUS Antrieb 16	gelb	ge	4
EIN/AUS Antrieb 17	grau	gr	5
EIN/AUS Antrieb 18	rosa	rs	6
EIN/AUS Antrieb 19	blau	bl	7
EIN/AUS Antrieb 20	rot	rt	8
EIN/AUS Antrieb 21	schwarz	sw	9
EIN/AUS Antrieb 22	violett	vi	10
EIN/AUS Antrieb 23	grau-rosa	gr-rs	11
EIN/AUS Antrieb 24	rot-blau	rt-bl	12
EIN/AUS Antrieb 25	weiß-grün	ws-gn	13
EIN/AUS Antrieb 26	braun-grün	bn-gn	14
EIN/AUS Antrieb 27	weiß-gelb	ws-ge	15
EIN/AUS Antrieb 28	gelb-braun	ge-bn	16
RESERVE	weiß-grau	ws-gr	17
RESERVE	grau-braun	gr-bn	18

Tbl- 12: Leitungsbelegung, Steuerleitung 18-polig Digital I/O

9.2 Drive Power Link DPL (Motorleitung)

Drive Power Link DPL (Motorleitung) Ausführung als: JZ-HF-CY 7x1 mm2

9.2.1 Aufbau

- ► Cu-Litze blank, feinstdrähtig nach DIN EN 60228 (VDE 0295) Kl. 6 Spalte 4, BS 6360 cl. 6
- bzw. IEC 60228 cl. 6
- Aderisolation, Spezial-PVC Z 7225
- Adern schwarz mit weißem Ziffernaufdruck nach DIN VDE 0293
- Schutzleiter grün-gelb in der Außenlage, ab 3 Adern
- Adern in Lagen verseilt, mit optimal abgestimmten Schlaglängen
- Bewicklung aus Vlies über jeder Verseillage
- ▶ PVC-Innenmantel
- Abschirmung aus verzinnten Cu-Drähten, Umlegung mit eingeflochtenen synthetischen Gegenwendel zur Verbesserung des Biegeverhaltens
- ► Bedeckung min. 85%
- ▶ Spezial-PVC-Außenmantel TM2, nach DIN VDE 0281 Teil 1 bzw. HD 21.1
- Mantelfarbe grau (RAL 7001)
- mit Metermarkierung

9.2.2 Eigenschaften

- weitgehend ölbeständig
- chemische Beständigkeit (s. Unterpunkt Technische Daten)
- ▶ PVC selbstverlöschend und flammwidrig nach VDE 0482-332-1-2, DIN EN 60332-1-2/IEC 60332-1
- die verwendeten Materialien bei der Fertigung sind silikon- und cadmiumfrei und frei von lackbenetzungsstörenden Substanzen
- ► Spezial-PVC-Schlauchleitung, hochflexibel, geschirmt
- in Anlehnung an DIN VDE 0281 Teil 13

9.2.3 Hinweise

► G = mit Schutzleiter gn-ge

9.2.4 Technische Daten Drive Power Link

Bezeichnung	Daten
Temperaturbereich	bewegt -5 °C bis +80 °C, nicht bewegt -40 °C bis +80 °C
Nennspannung	U0/U 300/500 V
Prüfspannung	4000 V
Durchschlagsspannung	min. 8000 V
Isolationswiderstand	min. 20 MOhm x km
Mindestbiegeradius	bewegt 10 x Leitungsdurchmesser
	nicht bewegt 5x Leitungsdurchmesser
Strahlenbeständigkeit	bis 80x106 cJ/kg (bis 80 Mrad)
Gewicht	ca. 200 kg/km

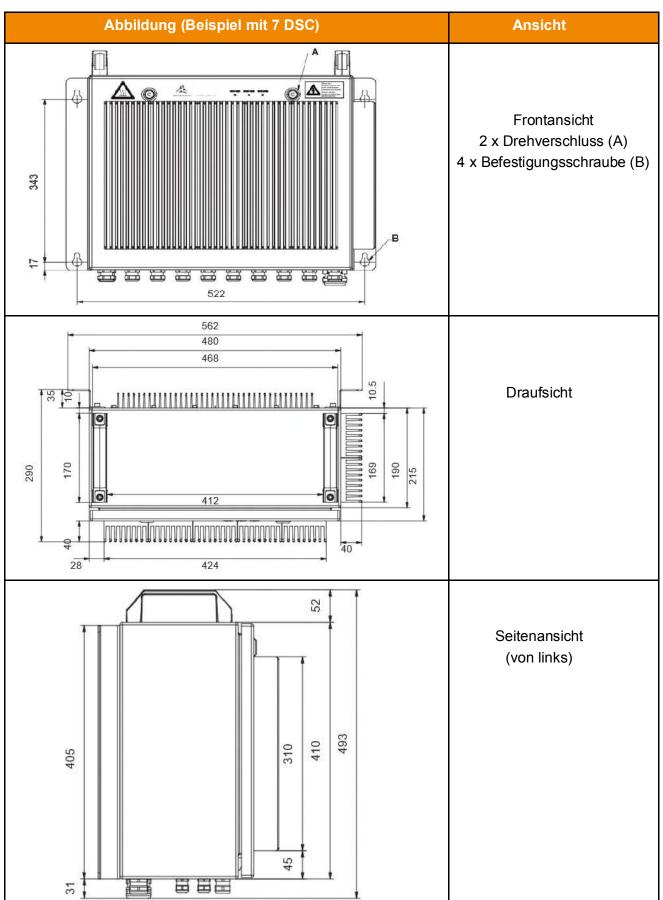
Tbl- 13: Technische Daten Drive Power Link

9.3 EtherCAT®/PROFINET®

Bezeichnung	Daten
Zulässiger Tempera-	Betrieb: -40 °C bis +70 °C
turbereich	Verlegung: -20 °C bis +60 °C
	Transport/Lagerung: -50 °C bis +70 °C
Minimaler Biegeradius	mehrmalig 7,5 x Durchmesser, einmalig 5 x Durchmesser
Gewicht	ca. 61 kg/km
Anwendung	Schleppkettenleitung, schleppfähig für folgende Anforderungen:
	- 3 Millionen Biegezyklen
	- Biegedurchmesser 200 mm
	 Verfahrensgeschwindigkeit von 4 m/s
	Beschleunigung von 4 m/s ²

Tbl- 14: EtherCat®/PROFINET®

9.4 Zuleitung für Control Box


- ► Zuleitung 3x1,0 mm² Steuerspannung (kein Not-Halt) 1 x 230 VAC (max. 30 m)
 - ÖLFLEX® FD CLASSIC 810 3G1; Durchmesser 7,1 mm
- ► Zuleitung 5x2,5 mm² Last-Versorgung (zwingend über Not-Halt) 3 x 400 VAC (max. 30 m)
 - ÖLFLEX® FD CLASSIC 810 5G2,5; Durchmesser 11,8 mm
- ► Technische Daten (ÖLFLEX® FD CLASSIC 810)
 - adhäsionsarme Oberfläche
 - flammwidrig nach DIN EN 60332-1-2 (VDE 0482-332-1-2)
 - in feuchten und nassen Räumen verwendbar
 - ausgelegt für bis zu 5 Millionen Wechselbiegezyklen in der Energieführungskette
 - im Freien nicht ohne UV-Schutz und nur unter Beachtung des Temperaturbereiches

Bezeichnung	Daten
Ader-Ident-Code	Schwarz mit weißen Nummern nach VDE 0293
In Anlehnung an	Ader nach VDE 0245/0281 Mantel nach VDE 0245/0281
Isolation spezifischer Durchgangswiderstand	> 20 GOhm x cm
Leiteraufbau	Feinstdrähtig nach VDE 0295, Klasse 6/IEC 60228 Cl.6
Mindestbiegeradius	Für flexiblen Einsatz: 7,5 x Außendurchmesser Fest verlegt: 4 x Außendurchmesser
Nennspannung	U0/U: 300/500 V
Prüfspannung	4000 V
Schutzleiter	G = mit Schutzleiter GN/GE X = ohne Schutzleiter
Temperaturbereich	Bewegt: 0 °C bis +70 °C
	Fest verlegt: -40 °C bis +70 °C

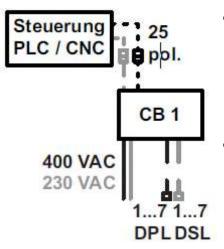
Tbl- 15: Zuleitung für Control Box

9.5 Abmaße / Anbaumaße Control Box

Tbl- 16: Abmaße (mm) Control Box

9.6 Konfigurationsvarianten

9.6.1 Darstellung der Blockschaltbilder

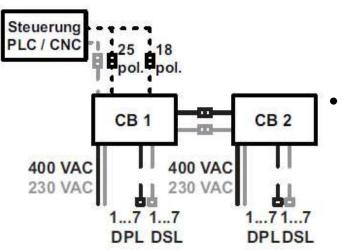

Abkürzung	Beschreibung
СВ	Control Box
CNC	Übergeordnete Steuerung (CNC-Maschine)
PLC	Speicherprogrammierbare Steuerung (SPS)
DPL	Drive Power Link (Motorleitung)
DSL	Drive Sensor Link (Sensorleitung)

Tbl- 17: Abkürzungen Blockschaltbild

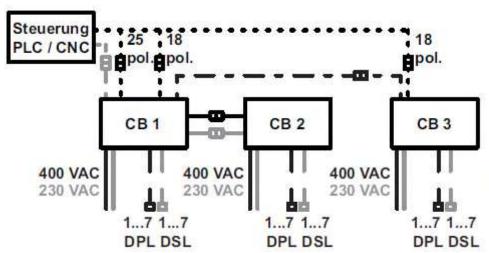
Linienart	Beschreibung
	400 VAC Versorgungsspannung
	230 VAC Versorgungsspannung
	EtherCAT [®] -Leitung ("EC-Link")
	Feldbus (EtherCAT [®] oder PROFINET [®]) von über- geordneter Steuerung*
	Steuerleitung (D I/O) von übergeordneter Steuerung*
<u> </u>	Drive Power Link ("DPL"), Verbindung zum Antrieb
— —	Drive Sensor Link ("DSL")**, Verbindung zum Antrieb
* alternativ	
** nur bei Module	en mit LCM

Tbl- 18: Linienarten Blockschaltbild

9.6.2 Konfigurationsvariante: Einzelne Control Box



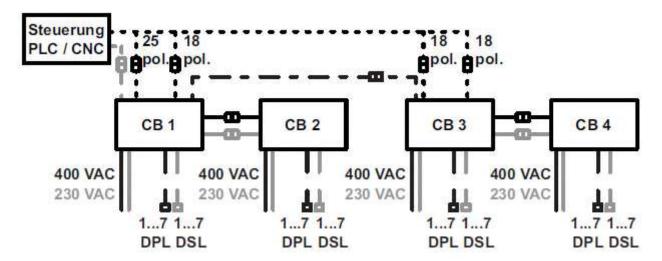
- Nur bei Anbindung über Netzwerkleitung (EtherCAT® oder PROFINET®): Schließen Sie die Control Box 1 mit der Netzwerkleitung (Stecker-Buchse, variable Längen) an die übergeordnete Steuerung an. Ein kurzes Stück Netzwerkleitung mit Stecker befindet sich an der Control Box.
- Nur bei Anbindung über Digital I/O: Schließen Sie die Control Box 1 mit der 25-poligen Steuerleitung (D I/O, Stecker-Buchse, variable Längen) an die übergeordnete Steuerung an. Verdrahten Sie die übergeordnete Steuerung direkt (Pinbelegung siehe Kapitel 9.1.4 "Leitungsbelegung (Steuerleitung Digital I/O)").


9.6.3 Konfigurationsvariante: Zwei Control Boxen

 Beschreibung der Abkürzungen und Linienarten siehe Kapitel 9.6.1 "Darstellung der Blockschaltbilder".

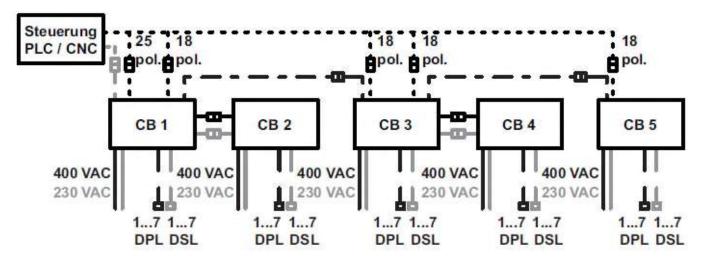
- Nur bei Anbindung über Netzwerkleitung (EtherCAT® oder PROFINET®): Schließen Sie die Control Box 1 mit der Netzwerkleitung (Stecker-Buchse, variable Längen) an die übergeordnete Steuerung an. Ein kurzes Stück Netzwerkleitung mit Stecker befindet sich an der Control Box.
 - Nur bei Anbindung über Digital I/O: Schließen Sie die Control Box 1 mit den 25poligen und 18-poligen Steuerleitungen (D I/O, Stecker. Buchse, variable Längen) an die übergeordnete Steuerung an. Verdrahten Sie die übergeordnete Steuerung direkt (Pinbelegung siehe Kapitel 9.1.4 "Leitungsbelegung (Steuerleitung Digital I/O)").
- Verbinden Sie mit der BUS-Link-Leitung und der CB-Link-Leitung (Stecker-Buchse) die Control Boxen 1 mit 2.

9.6.4 Konfigurationsvariante: Drei Control Boxen

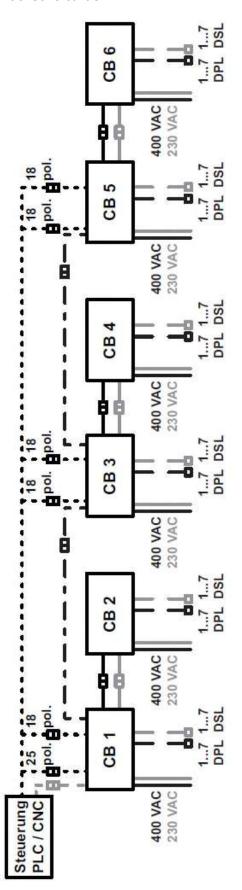

- Nur bei Anbindung über Netzwerkleitung (EtherCAT® oder PROFINET®): Schließen Sie die Control Box 1 mit der Netzwerkleitung (Stecker-Buchse, variable Längen) an die übergeordnete Steuerung an. Ein kurzes Stück Netzwerkleitung mit Stecker befindet sich an der Control Box.
- Nur bei Anbindung über Digital I/O: Schließen Sie die Control Box 1 mit der 25-poligen und der 18-poligen Steuerleitung (D I/O, Stecker-Buchse, variable Längen) sowie die Control Box 3 mit der 18-poligen Steuerleitung (D I/O, Stecker-Buchse, variable Längen) an die übergeordnete

Steuerung an. Verdrahten Sie die übergeordnete Steuerung direkt (Pinbelegung siehe Kapitel 9.1.4 "Leitungsbelegung (Steuerleitung Digital I/O)").

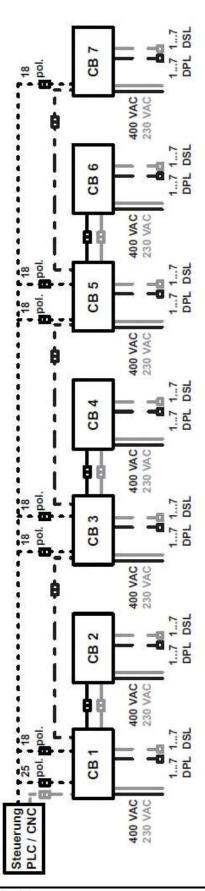
- Verbinden Sie mit der BUS-Link-Leitung und der CB-Link-Leitung (Stecker-Buchse) die Control Boxen 1 mit 2 .
- Verbinden Sie mit der EC-Link-Leitung (Stecker / Buchse) die Control Boxen 1 mit 3.


9.6.5 Konfigurationsvariante: Vier Control Boxen

- Nur bei Anbindung über Netzwerkleitung (EtherCAT® oder PROFINET®): Schließen Sie die Control Box 1 mit der Netzwerkleitung (Stecker-Buchse, variable Längen) an die übergeordnete Steuerung an. Ein kurzes Stück Netzwerkleitung mit Stecker befindet sich an der Control Box.
- Nur bei Anbindung über Digital I/O: Schließen Sie die Control Box 1 mit der 25-poligen und der 18-poligen Steuerleitung (D I/O, Stecker-Buchse, variable Längen) sowie die Control Box 3 mit zwei 18-poligen Steuerleitungen (D I/O, Stecker-Buchse, variable Längen) an die übergeordnete Steuerung an. Verdrahten Sie die übergeordnete Steuerung direkt (Pinbelegung siehe Kapitel 9.1.4 "Leitungsbelegung (Steuerleitung Digital I/O)").
- Verbinden Sie mit BUS-Link-Leitungen und CB-Link-Leitungen (Stecker-Buchse) die Control Boxen 1 mit 2 sowie 3 mit 4.
- Verbinden Sie mit der EC-Link-Leitung (Stecker / Buchse) die Control Boxen 1 mit 3.

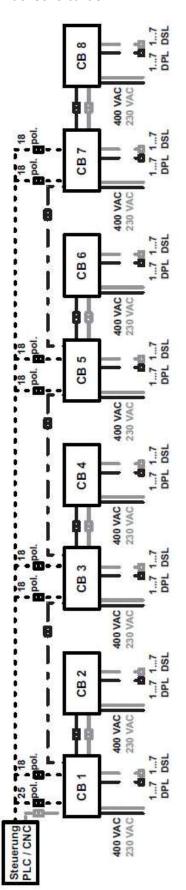

9.6.6 Konfigurationsvariante: Fünf Control Boxen

- Nur bei Anbindung über Netzwerkleitung (EtherCAT® oder PROFINET®): Schließen Sie die Control Box 1 mit der Netzwerkleitung (Stecker-Buchse, variable Längen) an die übergeordnete Steuerung an. Ein kurzes Stück Netzwerkleitung mit Stecker befindet sich an der Control Box.
- Nur bei Anbindung über Digital I/O: Schließen Sie die Control Box 1 mit der 25-poligen und der 18-poligen Steuerleitung (D I/O, Stecker-Buchse, variable Längen), die Control Box 3 mit zwei 18-poligen Steuerleitungen (D I/O, Stecker-Buchse, variable Längen) sowie die Control Box 5 mit der 18-poligen Steuerleitung (D I/O, Stecker-Buchse, variable Längen) an die übergeordnete Steuerung an. Verdrahten Sie die übergeordnete Steuerung direkt (Pinbelegung siehe Kapitel 9.1.4 "Leitungsbelegung (Steuerleitung Digital I/O)").
- Verbinden Sie mit BUS-Link-Leitungen und CB-Link-Leitungen (Stecker-Buchse) die Control Boxen 1 mit 2 sowie 3 mit 4.
- Verbinden Sie mit EC-Link-Leitungen (Stecker / Buchse) die Control Boxen 1 mit 3 sowie 3 mit
 5.


9.6.7 Konfigurationsvariante: Sechs Control Boxen

- Nur bei Anbindung über Netzwerkleitung (EtherCAT® oder PROFINET®): Schließen Sie die Control Box 1 mit der Netzwerkleitung (Stecker-Buchse, variable Längen) an die übergeordnete Steuerung an. Ein kurzes Stück Netzwerkleitung mit Stecker befindet sich an der Control Box.
- Nur bei Anbindung über Digital I/O: Schließen Sie die Control Box 1 mit der 25poligen und der 18-poligen Steuerleitung (D I/O, Stecker-Buchse, variable Längen) sowie die Control Boxen 3 und 5 mit zwei 18-poligen Steuerleitungen (D I/O, Stecker-Buchse, variable Längen) an die übergeordnete Steuerung an. Verdrahten Sie die übergeordnete Steuerung direkt (Pinbelegung siehe Kapitel 9.1.4 "Leitungsbelegung (Steuerleitung Digital I/O)").
- Verbinden Sie mit BUS-Link-Leitungen und CB- Link-Leitungen (Stecker-Buchse) die Control Boxen 1 mit 2, 3 mit 4 sowie 5 mit 6.
- Verbinden Sie mit EC-Link-Leitungen (Stecker / Buchse) die Control Boxen 1 mit 3 sowie 3 mit 5.

9.6.8 Konfigurationsvariante: Sieben Control Boxen



- Nur bei Anbindung über Netzwerkleitung (EtherCAT® oder PROFINET®): Schließen Sie die Control Box 1 mit der Netzwerkleitung (Stecker-Buchse, variable Längen) an die übergeordnete Steuerung an. Ein kurzes Stück Netzwerkleitung mit Stecker befindet sich an der Control Box.
- Nur bei Anbindung über Digital I/O: Schließen Sie die Control Box 1 mit der 25poligen und der 18-poligen Steuerleitung (D I/O, Stecker-Buchse, variable Längen), die Control Boxen 3 und 5 mit zwei 18-poligen Steuerleitungen (D I/O, Stecker- Buchse, variable Längen) sowie die Control Box 7 mit der 18-poligen Steuerleitung (D I/O, Stecker-Buchse, variable Längen) an die übergeordnete Steuerung an. Verdrahten Sie die übergeordnete Steuerung direkt (Pinbelegung siehe Kapitel 9.1.4 "Leitungsbelegung (Steuerleitung Digital I/O)").
- Verbinden Sie mit BUS-Link-Leitungen und CB- Link-Leitungen (Stecker-Buchse) die Control Boxen 1 mit 2, 3 mit 4 sowie 5 mit 6.
- Verbinden Sie mit EC-Link-Leitungen (Stecker / Buchse) die Control Boxen 1 mit 3, 3 mit 5 sowie 5 mit 7.

9.6.9 Konfigurationsvariante: Acht Control Boxen

 Beschreibung der Abkürzungen und Linienarten siehe Kapitel 9.6.1 "Darstellung der Blockschaltbilder".

- Nur bei Anbindung über Netzwerkleitung (EtherCAT® oder PROFINET®): Schließen Sie die Control Box 1 mit der Netzwerkleitung (Stecker-Buchse, variable Längen) an die übergeordnete Steuerung an. Ein kurzes Stück Netzwerkleitung mit Stecker befindet sich an der Control Box.
- Nur bei Anbindung über Digital I/O: Schließen Sie die Control Box 1 mit der 25poligen und der 18-poligen Steuerleitung (D I/O, Stecker-Buchse, variable Längen), die Control Boxen 3, 5 und 7 mit zwei 18poligen Steuerleitungen (D I/O, Stecker-Buchse, variable Längen) an die übergeordnete Steuerung an. Verdrahten Sie die übergeordnete Steuerung direkt (Pinbelegung siehe Kapitel 9.1.4 "Leitungsbelegung (Steuerleitung Digital I/O)").
- Verbinden Sie mit BUS-Link-Leitungen und CB- Link-Leitungen (Stecker-Buchse) die Control Boxen 1 mit 2, 3 mit 4, 5 mit 6 sowie 7 mit 8.
- Verbinden Sie mit EC-Link-Leitungen (Stecker / Buchse) die Control Boxen 1 mit 3, 3 mit 5 sowie 5 mit 7.

9.7 **Digitale Steuerung**

Über die digitale I/O-Schnittstelle kann das ToolDrives System mit binären Steuersignalen, die der Spezifikation EN 61131 entsprechen, gesteuert werden.

Bezeichnung	Daten
Nennspannung	24 VDC (-15 %/+20 %)
Signalspannung "0"	-3+5 V (EN 61131-2, Typ 1/3)
Signalspannung "1"	+15+30 V (EN 61131-2, Typ 3)
Eingangsstrom	3 mA typ. (EN 61131-2, Typ 3)
Eingangsfilter	3,0 ms typ.
Potenzialtrennung	500 V

Tbl- 19: Eigenschaften der Steuersignale

9.7.1 Übersicht der Steuerleitungen

Für jede Control Box ist eine eigene Steuerleitung herausgeführt. Die Steuerleitung für die erste Control Box ist 25-polig, die übrigen Steuerleitungen (für die Control Boxen 2 bis maximal 8) sind 18-polig ausgeführt. Die Steuerleitungen zu den geradzahligen Control Boxen (Nr. 2, 4, 6, 8) sind dabei über die jeweils vorhergehende Control Box (Nr. 1, 3, 5, 7) herausgeführt. Dies ergibt im Vollausbau mit acht Control Boxen folgende Konfiguration.

Control-Box Nr.	Steuerleitungen
1	25-polig + 18-polig
2	keine
3	2 × 18-polig
4	keine
5	2 × 18-polig
6	keine
7	2 × 18-polig
8	keine

Tbl- 20: Übersicht der Steuerleitungen

9.7.2 Digitale Signaleingänge

Signalrichtung: Steuerung ToolDrives System

Das ToolDrives System empfängt folgende allgemeine Steuersignale über die 25-polige Leitung, die an der ersten Control Box herausgeführt ist.

Signalname	Aderfarbe	Funktion
Freigabe	weiß-grau	"0": Die Zwischenkreisspannung für die DSC wird gesperrt "1": Die Zwischenkreisspannung für die DSC wird freigeg- eben
Fehler Rücksetzen	grau-braun	Abfolge "0-1-0": Alle anstehenden Fehler werden, falls möglich, zurückgesetzt
Drehzahlvorgabe 1	weiß-rosa	Vorgabe einer festen Drehzahl, Bit 1
Drehzahlvorgabe 2	rosa-braun	Vorgabe einer festen Drehzahl, Bit 2
Drehzahlvorgabe 3	weiß-rot	Vorgabe einer festen Drehzahl, Bit 3
Drehzahlvorgabe 4	braun-rot	Vorgabe einer festen Drehzahl, Bit 4

Tbl- 21: Digitale Signaleingänge

Die Drehzahl der Antriebe ist abhängig von den vier Signalen zur Drehzahlvorgabe sowie von der verwendeten Werkzeugaufnahme.

Alle Bearbeitungsmodule innerhalb eines Systems sollten mit der gleichen Werkzeugaufnahme ausgeführt sein. Sollten unterschiedliche Werkzeugaufnahmen gewünscht sein, so ist dies nur nach Abstimmung und Freigabe durch **ToolDrives GmbH&Co.KG** realisierbar.

Die folgende Tabelle zeigt die Drehzahlen in Abhängigkeit von den Signalen zur Drehzahlvorgabe und dem konfigurierten Drehzahlbereich. Bei der Auswahl der Drehzahl sind die zulässigen Drehzahlen der Werkzeuge und der Werkzeugaufnahme zu beachten! Die Drehzahlvorgabe wird während des Stillstands und auch im Betrieb der Bearbeitungsmodule übernommen, d.h. im laufenden Betrieb kann die Drehzahl der Antriebe verändert werden. Eine Drehzahländerung im laufenden Betrieb wird nach einer Zeit von ca. 50 bis 75 Millisekunden übernommen.

	Dreh	zahlvoı	gabe		Drehzahl in mi	n ⁻¹ abhängig vom D	rehzahlbereich		
Stufe	Bit 4	Bit 3	Bit 2	Bit 1	Drehzahlbereich 3.000 - 9.000	Drehzahlbereich 3.000 - 18.000			
					(z. B. Weldon)	(z. B. Schnellspann Weldon, High Speed Weldon)	(z. B. Spannzange ER 11/16)		
1	0	0	0	0	3.000	3.000	3.000		
2	0	0	0	1	3.400	3.600	4.000		
3	0	0	1	0	3.800	4.200	5.000		
4	0	0	1	1	4.200	4.800	6.000		
5	0	1	0	0	4.600	5.400	7.000		
6	0	1	0	1	5.000	6.000	8.000		
7	0	1	1	0	5.400	6.600	9.000		

Anhang

Control Box

8	0	1	1	1	5.800	7.200	10.000		
9	1	0	0	0	6.200	6.200 7.800			
10	1	0	0	1	6.600	8.400	12.000		
11	1	0	1	0	7.000	9.000	13.000		
12	1	0	1	1	7.400	9.600	14.000		
13	1	1	0	0	7.800	10.200	15.000		
14	1	1	0	1	8.200	10.800	16.000		
15	1	1	1	0	8.600	11.400	17.000		
16	1	1	1	1	9.000	12.000	18.000		

Tbl- 22: Drehzahlvorgaben

Das ToolDrives System erhält zur Steuerung der Antriebe für jede Control Box folgende Steuersignale über die 25-polige sowie (bei zwei oder mehr Control Boxen) 18-polige Leitung.

Signalname	Aderfarbe	Funktion
Antrieb 1	grün	"0": Antrieb 1 nicht ausstellen (dreht mit Leerlaufdrehzahl) "1": Antrieb 1 ausstellen und auf Solldrehzahl beschleunigen
Antrieb 2	gelb	"0": Antrieb 2 nicht ausstellen (dreht mit Leerlaufdrehzahl) "1": Antrieb 2 ausstellen und auf Solldrehzahl beschleunigen
Antrieb 3	grau	"0": Antrieb 3 nicht ausstellen (dreht mit Leerlaufdrehzahl) "1": Antrieb 3 ausstellen und auf Solldrehzahl beschleunigen
Antrieb 4	rosa	"0": Antrieb 4 nicht ausstellen (dreht mit Leerlaufdrehzahl) "1": Antrieb 4 ausstellen und auf Solldrehzahl beschleunigen
Antrieb 5	blau	"0": Antrieb 5 nicht ausstellen (dreht mit Leerlaufdrehzahl) "1": Antrieb 5 ausstellen und auf Solldrehzahl beschleunigen
Antrieb 6	rot	"0": Antrieb 6 nicht ausstellen (dreht mit Leerlaufdrehzahl) "1": Antrieb 6 ausstellen und auf Solldrehzahl beschleunigen
Antrieb 7	schwarz	"0": Antrieb 7 nicht ausstellen (dreht mit Leerlaufdrehzahl) "1": Antrieb 7 ausstellen und auf Solldrehzahl beschleunigen
Antrieb 8	violett	"0": Antrieb 8 nicht ausstellen (dreht mit Leerlaufdrehzahl) "1": Antrieb 8 ausstellen und auf Solldrehzahl beschleunigen
Antrieb 9	grau-rosa	"0": Antrieb 9 nicht ausstellen (dreht mit Leerlaufdrehzahl) "1": Antrieb 9 ausstellen und auf Solldrehzahl beschleunigen
Antrieb 10	rot-blau	"0": Antrieb 10 nicht ausstellen (dreht mit Leerlaufdrehzahl) "1": Antrieb 10 ausstellen und auf Solldrehzahl beschleunigen
Antrieb 11	weiß-grün	"0": Antrieb 11 nicht ausstellen (dreht mit Leerlaufdrehzahl) "1": Antrieb 11 ausstellen und auf Solldrehzahl beschleunigen
Antrieb 12	braun-grün	"0": Antrieb 12 nicht ausstellen (dreht mit Leerlaufdrehzahl) "1": Antrieb 12 ausstellen und auf Solldrehzahl beschleunigen
Antrieb 13	weiß-gelb	"0": Antrieb 13 nicht ausstellen (dreht mit Leerlaufdrehzahl) "1": Antrieb 13 ausstellen und auf Solldrehzahl beschleunigen
Antrieb 14	gelb-braun	"0": Antrieb 14 nicht ausstellen (dreht mit Leerlaufdrehzahl) "1": Antrieb 14 ausstellen und auf Solldrehzahl beschleunigen

Tbl- 23: Steuersignale

9.8 Steuerung über Feldbus (EtherCAT® oder PROFINET®)

Auf dem Feldbus werden folgende Daten übertragen. (Senderichtung aus Sicht der übergeordneten Steuerung)

Anzahl	Name	Größe [Bytes]	Gesamt [Bytes]	Richtung
1	dwConnectExternalBus_Global_IN	4	4	Senden
1	dwConnectExternalBus_Global_OUT	4	4	Empfang
8	arrConnectExternalBus_Controlbox_IN	2	8 × 2	Senden
8	arrConnectExternalBus_Controlbox_OUT	2	8 × 2	Empfang
56	dwINData_Axis_1 / dwINData_Axis_2	8	56 × 8	Senden
56	dwOUTData_Axis_1 / dwOUTData_Axis_2	8	56 × 8	Empfang

Tbl- 24: Senderichtung

- Anzahl der Control Boxen: 1...8
- Anzahl der Bearbeitungsmodule bzw. DSC: 1...56
- Dies ergibt bei Vollausbau mit 56 Bearbeitungsmodulen (max. 112 Antriebe) eine Gesamtgröße von 468 Bytes je Senderichtung.

Im Protokoll werden folgende Integer-Datentypen verwendet:

Datentyp	Bezeichnung	Wertebereich							
unsigned 1 bit	Bit	0, 1							
unsigned 8 bit	U8	0 bis 255							
unsigned 16 bit	U16	0 bis 65535							
signed 16 bit	I16	-32768 bis +32767							

Tbl- 25: Datentypen

9.8.1 Zu sendende System-Daten

Senderichtung: übergeordnete Steuerung ToolDrives System

dwConnectExternalBus_Global_IN

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																														bReset Error	bEnable

Bit-Nr.	Тур	Name	Beschreibung
0	Bit	bEnable	Freigabe der Zwischenkreisspannung für die DSC
1	Bit	bReset_Error	Alle Fehler zurücksetzen
2 - 31		Spare	Reserviert

Tbl- 26: Beschreibung zu sendende System-Daten

9.8.2 Zu empfangende System-Daten

Senderichtung: ToolDrives System \rightarrow übergeordnete Steuerung

dwConnectExternalBus_Global_OUT

31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 1	4 13	12	11	10	9	8	7	6	5	4	3	2	1	0
Лах	/lin														Error	
peedN	_beed_N														nomu	ady
bySp	bySp														bCor	bRea

Bit-Nr.	Тур	Name	Beschreibung					
0	Bit	bReady	System bereit					
1	Bit	bCommon_Error	Sammelfehler (DSC und/oder Control Boxen)					
2 - 15		Spare	Reserviert					
16 - 23	U8	bySpeed_Min	Minimale Antriebsdrehzahl in 100 min ⁻¹					
24 - 31	U8	bySpeed_Max	Maximale Antriebsdrehzahl in 100 min ⁻¹					

Tbl- 27: Beschreibung empfangende System-Daten

Die minimale Antriebsdrehzahl der Bearbeitungsmodule beträgt generell 3.000 min-1, d.h. der Wert bySpeedMin ist 30. Die maximale Antriebsdrehzahl ist abhängig von der Werkzeugaufnahme und der Bearbeitungsmodule:

Werkzeugaufnahme	BVXXX-XX-000: max. Drehzahl [min ⁻¹]		Wert by-Speed_Max
Weldon	9.000		90 / -
Schnellspannfutter (Weldon)	12.000	-	120 / -
High Speed Weldon	12.000	12.000	120 / 120
Spannzange ER 11	14.000	-	140 / -
Spannzange ER 16	-	17.000	- / 170

Tbl- 28: Antriebsdrehzahl der Bearbeitungsmodule

9.9 Daten der Control Box

9.9.1 Zu sendende Daten

Senderichtung: übergeordnete Steuerung ToolDrives System arrConnectExternalBus_Controlbox_IN

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															bResetError_CB

Bit-Nr.	Тур	Name	Beschreibung
0	Bit	bResetError_CB	Fehler der Control Box (insbesondere des Power Moduls) zurücksetzen.
1 - 15		Spare	Reserviert

Tbl- 29: Beschreibung zu sendende Control Box-Daten

9.9.2 Zu empfangende Daten

 $Sender ichtung: ToolDrives \ System \rightarrow \ddot{u}bergeordnete \ Steuerung \\ arr Connect External Bus_Controlbox_OUT$

Ŀ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					oyErrorCode_CB	not defined]									DError CANMaster	DError ControlBox

Bit-Nr.	Тур	Name	Beschreibung
0	Bit	bError_ControlBox	Fehler in der Control Box (Power Modul) aufgetreten.
1	Bit	bError_CANMaster	Fehler des CAN-Master aufgetreten (nur für Control Boxen Nr. 1, 3, 5 und 7).
2 - 7		Spare	Reserviert
8 - 15	U8	byErrorCode_CB	Fehlercode der Control Box.

Tbl- 30: Beschreibung zu empfangenden Control Box -Daten

9.10 Antriebsbezogene Daten

9.10.1 Zu sendende Daten

Senderichtung: übergeordnete Steuerung ToolDrives System

dwINData_Axis_1

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										bBohrenAktiv	bUseIdleSpeed		Axis C		bAxis Start										ρασος sixΔi	1					

dwlNData_Axis_2

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										bBohrenAktiv	bUseIdleSpeed	esetLCM	⋖		bAxis Start										Avio Speed	1					

Bit-Nr.	Тур	Name	Beschreibung
0 - 15	I16	iAxis_Speed	Solldrehzahl des Antriebs in min ⁻¹
16	Bit	bAxis_Start	1: Starten des Antriebs
			0: Stoppen der Antriebs (vergleiche Bit 20)
17	Bit	bAxis_ResetError	Fehler des Antriebs zurücksetzen.
18	Bit	bAxis_Out	0: Antriebsachse nicht ausstellen
			1: Antriebsachse ausstellen (digitalen Ausgang schalten) *
19	Bit	bResetDSC_Node	Motorsteuerung zurücksetzen. Bit nur in <i>dwlNData_Axis_1</i> , gilt für beide Achsen. **
19	Bit	bResetLCM_Node	LCM-Funktion zurücksetzen
20	Bit	bUseIdleSpeed	0: Bit16 = 0 schaltet den Antrieb aus
			1: Bit16 = 0 bremst den Antrieb auf Leerlaufdrehzahl
21	Bit	bBohrenAktiv	Mit diesem Bit informiert die übergeordnete Steuerung das ToolDrives System über einen laufenden Bohrvorgang (Bohrerbrucherkennung).
22 - 31		Spare	Reserviert

^{*} Nur bei Bearbeitungsmodulen mit integrierter Ventiltechnik

Tbl-31: Antriebsbezogende Sendedaten

^{**} Nur bei Bearbeitungsmodulen mit LCM

Die Steuerworte *dwlNData_Axis_1* und *dwlNData_Axis_2* sind einem Bearbeitungsmodul mit zwei unabhängigen Antrieben zugeordnet.

Die Solldrehzahl *iAxis_Speed* sollte innerhalb des zulässigen Drehzahlbereichs liegen, der vom ToolDrives System vorgegeben wird (siehe Kapitel 9.8.2 "Zu empfangende System-Daten": *dwConnectExtemalBus Global OUT*).

Wenn die Solldrehzahl innerhalb des zulässigen Drehzahlbereichs liegt und das zugehörige Start-Bit *bAxis_Start* gesetzt wird, so dreht der Antrieb mit der vorgegebenen Drehzahl.

Falls die Solldrehzahl außerhalb des zulässigen Drehzahlbereichs liegt, so wird dieser Wert ignoriert und führt zu einer Fehlermeldung (siehe Kapitel 9.10.2 "Zu empfangende Daten": dwOUTData_Axis_1 / dwOUTData_Axis_2).

Auch der Drehzahlwert 0 und negative Werte werden als unzulässig bewertet.

9.10.2 Zu empfangende Daten

Senderichtung: ToolDrives System → übergeordnete Steuerung

dwOUTData_Axis_1

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							bKolbenUnten	pKolbenOben	bBohrerbruch	ocityO	bDSC Node Error	bSpeed Value Error	Axis_Inst	bAxis Error	bAxis Enabled										WAxis ErrorCode						

dwOUTData Axis 2

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							bKolbenUnten	-	Bohrerb	bVelocityOK	bLCM Node Error	bSpeed Value Error	Axis Inst												WAxie FronCode						

Bit-Nr.	Тур	Name	Beschreibung
0 - 15	U16	wAxis_ErrorCode	Fehlercode des Antriebs (siehe 9.11.1 "Fehleranzeigen")
16	Bit	bAxis_Enabled	Antrieb ist aktiv (Motor dreht).
17	Bit	bAxis_Error	Am Antrieb ist ein Fehler aufgetreten. Der Fehlercode gibt Aufschluss über die Fehlerursache.
18	Bit	bAxis_Installed	Antrieb ist installiert (vorhanden).
19	Bit	bSpeed_Value_Error	Im Parameter iAxis_Speed wurd ein unzulässiger Drehzahlwert vorgegeben.

20	Bit	bDSC_Node_Error	Die CAN-Busverbindung zur Motorsteuerung istgestört. Das Bit wird nur in dwOUTData_Axis_1 gesetzt und gilt für beide Achsen.
21	Bit	bVelocityOK	Die Achse hat Bereich der Solldrehzahl erreicht.
22	Bit	bBohrerbruchErkannt	Nach Abschluß eines Bohrvorganges (vergleiche Bit 21 Sendedaten) wurde ein Bohrerbruch erkannt. *
23	Bit	bKolbenOben	Obere Kolbenendposition erkannt. **
24	Bit	bKolbenUnten	Untere Kolbenendposition erkannt. **
25 - 31		Spare	Reserviert

^{*} Nur bei freigeschalteter Option "Bohrerbrucherkennung".

Tbl- 32: Antriebsbezogende Empfangsdaten

Die Steuerworte dwOUTData_Axis_1 und dwOUTData_Axis_2 sind einem Bearbeitungsmodul mit zwei unabhängigen Antrieben zugeordnet.

Falls die Solldrehzahl *iAxis_Speed* (siehe 9.10.1 "Zu sendende Daten") außerhalb des zulässigen Drehzahlbereichs liegt, gilt folgende Fehlerbehandlung:

Bei Stillstand des Antriebs:

Wird im Stillstand ein unzulässiger Drehzahlwert vorgegeben, so wird das Fehlerbit bSpeed_Value_Error unmittelbar gesetzt. Der Antrieb kann nun nicht gestartet werden, das Setzen des Start-Bits bAxis_Start wird ignoriert. Wird in diesem Zustand anschließend ein zulässiger Drehzahlwert vorgegeben, so wird (bei gesetztem Start-Bit) der Antrieb sofort gestartet und das Fehlerbit wird zurückgenommen.

• Bei laufendem Antrieb:

Wenn der Antrieb bereits mit einer zulässigen Drehzahl läuft und es wird anschließend ein unzulässiger Drehzahlwert vorgegeben, so dreht der Antrieb weiterhin mit der bisherigen Drehzahl. Der unzulässige Drehzahlwert wird ignoriert und das Fehlerbit bSpeed_Value_Error wird gesetzt. Wenn daraufhin wieder eine gültige Drehzahl vorgegeben wird, so wird diese neue Drehzahl für den Antrieb übernommen und das Fehlerbit wird zurückgesetzt.

Ausnahme:

Für Antriebe, die als "nicht installiert" gekennzeichnet sind (*bAxis_Installed* = 0), wird das Fehlerbit *bSpeed_Value_Error* generell nicht gesetzt.

 Wenn nach einer unzulässigen Drehzahl wieder eine gültige Drehzahl vorgegeben wird, so wird das Fehlerbit bSpeed_Value_Error sofort zurückgenommen. Es ist kein Kommando zum Rücksetzen des Fehlers erforderlich.

^{**} Nur bei Bearbeitungsmodulen mit LCM und integrierter Endlagenerfassung.

9.11 Möglichkeiten zur Bedienung

9.11.1 Fehleranzeigen

Fehlercode	Fehler	Beschreibung
Error "Common"		
0x0000	ERROR_RESET	Fehler wurde zurückgesetzt.
0x3210	UDC_HIGH	Zwischenkreisspannung zu hoch oder Grenzwert falsch gesetzt.
0x3220	UDC_LOW	Zwischenkreisspannung zu niedrig oder Grenzwert falsch gesetzt.
0x5530	EEPROM	Inhalt in EEPROM fehlerhaft, Lesevorgang fehlgeschlagen. → Elektronik neu starten. Wenn Fehler immer noch vorhanden, Parameter neu in EEPROM speichern.
0x7400	LOAD_TIMER	DSP-Auslastung zu hoch.
0x8100	COMMUNICATION_GENERIC	Kommunikationsfehler, z.B. Heartbeat. Konfiguration überprüfen (Sende- und Empfangskonfiguration passt nicht mit tatsächlicher Kommunikation überein. CAN-Verkabelung prüfen.
0x8200	PROTOCOL_GENERIC	Protokollfehler. Master sendet "falsche" Tele- gramme oder Telegramme werden durch EMV- Einflüsse fehlerhaft.
Error "Axis 1	" / Error "Axis 2"	
0x2310	OVERCURRENT	Überstromfehler (I x t)
0x2320	SHORT_CIRCUIT	Kurzschlussfehler
0x2380	CURRENT_OFFSET	Strom-Offsetfehler
0x2381	CTRL_SATURATION	Reglerbegrenzung erreicht, d.h. eventuell kein Motor angeschlossen oder maximale Drehzahl bzw. Lastpunkt erreicht.
0x2382	SUM_OF_CURRENTS	Summenstromfehler
0x4310	OVERTEMP_MOTOR	Übertemperatur Motormodell bzw. Grenzwert falsch gesetzt.
0x4320	OVERTEMP_PA	Übertemperatur Endstufe bzw. Grenzwert falsch gesetzt.
0x7180	OVERVELOCITY	Überdrehzahl bzw. Grenzwert falsch gesetzt.
0x7381	SENSORLESS	Drehzahlabweichung bei geberlosem Betrieb zu groß.
0x7382	SENSORLESS_STARTUP	Sensorlose Aufstart-Sequenz fehlgeschlagen. Wenn dies mehrmalig auftritt, sind die Regler nicht optimal für die Anwendung parametriert.

Tbl-33: Beschreibung Fehlercodes DSC

Fehlercode	Fehler	Beschreibung	
0x0001xxxx	Error NMT	DSC nicht angeschlossen / Fehler CAN-Master	
0x0002xxxx	Write / Read SDO	DSC nicht angeschlossen bzw. Zugriff auf nicht vorhandene Objekte bzw. falsche Parameter.	
0x0004xxxx	Reset CAN-Master	Fehler CAN-Master / falsche Parametrierung	
0x0008xxxx	Write all (only File Handling)	Parameterdatei nicht gefunden.	
0x0010xxxx	ADS Net ID / Device ID	Fehler CAN-Master.	
0x0020xxxx	EEPROM Device	Parameter konnten nicht gelöscht bzw. gespechert werden.	
0x0040xxxx	EEPROM File Handling	Parameterdatei nicht gefunden.	

Tbl- 34: Fehlercode-Manager auf der Konfigurationsoberfläche

xxxx --> ADS Error Code, siehe Beckhoff Information System

Die Fehlercodes der Konfigurationsoberfläche werden ODER-verknüpft, d. h. es können mehrere angezeigt werden. Ein anstehender Fehler sollte daher immer quittiert werden, um eine neue aussagekräftige Fehlermeldung zu erzeugen. Bei Anzeige mehrerer Fehler auf einmal kann der ADS Error Code nicht mehr ausgewertet werden!

9.12 Schnittstellen

c = Anzahl der Control Boxen: 1 ... 8

m = Anzahl der Bearbeitungsmodule bzw. Dual Servo Controller: 1 ... 56 n = Anzahl der Antriebe: 1 ... 112

9.12.1 Digitale Steuerung (I/O)

Eingänge und Ausgänge aus Sicht der Control Box.

Signal	Beschreibung
1 x Ausgang	System bereit
1 x Ausgang	Ausgang Sammelfehler
1 x Eingang	Freigabe der Zwischenkreisspannung für die Dual Servo Controller
1 x Eingang	Alle Fehler zurücksetzen
n x Eingang	Drehen und Ausstellen, Drehzahlvergabe für alle Spindeln gleich
4 x Eingang	Vorgabe der Drehzahl aus 16 vorprogrammierten Drehzahlen

Tbl- 35: Eingänge und Ausgänge aus Sicht der Control Box

9.12.2 EtherCAT® Feldbus

Eingänge aus Sicht der Control Box (siehe auch Kapitel 9.8 "Steuerung über Feldbus (EtherCAT® oder PROFINET®)".

Die Eingänge werden wie in Tabelle "Tbl-36" angegeben auf den Feldbus geschaltet.

Eingangssignal	Signallänge
dwConnectExternalBus_Global_IN	32 Bit
arrConnectExternalBus_Controlbox_IN ControlBox 1	16 Bit
arrConnectExternalBus_Controlbox_IN ControlBox 2	16 Bit
arrConnectExternalBus_Controlbox_IN ControlBox 8	16 Bit
dwINData_Axis_1 Modul 1	32 Bit
dwlNData_Axis_2 Modul 1	32 Bit
dwINData_Axis_1 Modul 52	32 Bit
dwINData_Axis_2 Modul 52	32 Bit

Tbl- 36: Eingangssignale EtherCAT® Feldbus

Ausgänge aus Sicht der Control Box (siehe auch Kapitel 9.8 "Steuerung über Feldbus (EtherCAT® oder PROFINET®)".

Die Ausgänge werden wie in Tabelle "Tbl-37" angegeben auf den Feldbus geschaltet.

Ausgangssignal	Signallänge
dwConnectExternalBus_Global_OUT	32 Bit
arrConnectExternalBus_Controlbox_OUT ControlBox 1	16 Bit
arrConnectExternalBus_Controlbox_OUT ControlBox 2	16 Bit
arrConnectExternalBus_Controlbox_OUT ControlBox 8	16 Bit
dwOUTData_Axis_1 Modul 1	32 Bit
dwIOUTData_Axis_2 Modul 1	32 Bit
dwOUTData_Axis_1 Modul 52	32 Bit
dwOUTData_Axis_2 Modul 52	32 Bit

Tbl- 37: Ausgangssignale EtherCAT® Feldbus

9.12.3 PROFINET® Feldbus

Der Stationsname des ToolDrives Systems lautet "tooldrivesXXX" wobei XXX für eine Zahl zwischen 1 und 255 steht. Die Voreinstellung für den Stationsnamen lautet "tooldrives001".

Die Ein- und Ausgänge des ToolDrives Systems werden in 32 Bit breiten Signalen auf den Feldbus geschaltet.

Eingänge aus Sicht der Control Box (siehe auch Kapitel 9.8 "Steuerung über Feldbus (EtherCAT® oder PROFINET®)".

Eingangssignal		
dwConnectExternalBus_Global_IN		
arrConnectExternalBus_Controlbox_IN Box 2	arrConnectExternalBus_Controlbox_IN Box 1	
arrConnectExternalBus_Controlbox_IN Box 4	arrConnectExternalBus_Controlbox_IN Box 3	
arrConnectExternalBus_Controlbox_IN Box 8	arrConnectExternalBus_Controlbox_IN Box 7	
dwINData_Axis_1 Modul 1		
dwINData_Axis_2 Modul 1		
dwINData_Axis_1 Modul 52		
dwINData_Axis_2 Modul 52		

Tbl- 38: Eingangssignale PROFINET® Feldbus

Ausgänge aus Sicht der Control Box (siehe auch Kapitel 9.8 "Steuerung über Feldbus (EtherCAT® oder PROFINET®)".

Ausgangssignal		
dwConnectExternalBus_Global_OUT		
arrConnectExternalBus_Controlbox_OUT Box 2	arrConnectExternalBus_Controlbox_OUT Box 1	
arrConnectExternalBus_Controlbox_OUT Box 4	arrConnectExternalBus_Controlbox_OUT Box 3	
arrConnectExternalBus_Controlbox_OUT Box 8	arrConnectExternalBus_Controlbox_OUT Box 7	
dwOUTData_Axis_1 Modul 1		
dwOUTData_Axis_2 Modul 1		
dwOUTData_Axis_1 Modul 52		
dwOUTData_Axis_2 Modul 52		

Tbl- 39: Ausgangssignale PROFINET® Feldbus

9.13 Begriffe und Abkürzungen

Anhang

ToolDrives System		
Begriff	Ab- kürzung	Beschreibung
Dezentrale Automatisierungsplattfo	orm	
Control Box "Master"	CB-T	
Control Box "add-on Master"	CB-B	
Control Box "add-on Slave"	CB-N	
Bearbeitungsmodule		
Basic Line		Modul Basic Line BV032-01-000
Modul Basic Line Bxxxxxx		Modul Basic Line BV032-02-000
		Modul Basic Line BV032-02-050
		- mit externen Ventilen - mit integrierter Ventiltechnik
Combi Line		Modul Combi Line Cxxxxxx
Life Cycle Management LCM		
Condition Monitoring	CM	Software im Tool
Life Cycle Management Elektronik		Hardware im Bearbeitungsmodul
Dual Servo Controller	DSC	Doppelachsregler
Tool Manager	TM	
Power Modul	PM	
Drive Sensor Link	DSL	
Drive Power Link	DPL	
EC-Link		EtherCAT®-Leitung (Control Box 1/3, 3/5, 5/7)
BUS-Link		CAN Bus (Control Box 1/2, 3/4, 5/6, 7/8)
CB-Link		Steuerleitung (Control Box 1/2, 3/4, 5/6, 7/8)
CNC-Link		Anbindung Control Box "Master" an übergeordnete Steuerung
EtherCAT [®] -Koppler		Komponente in Control Box "add-on Master" zur Anbindung an Control Box "Master"
EtherCAT®-Bridge		Komponente in Control Box "Master" als Kommunikationsschnittstelle zur über- geordneten Steuerung
EtherCAT [®] -Verlängerung		Komponente in Control Box "Master" zur Anbindung eines weiteren "add-on Master"
CANopen [®] -Master		Komponente in Control Box "Master" und "add-on Master" für die interne Feldbus- kommunikation

9.14 Konformitätserklärung

EG-Konformitätserklärung

Wir Wittenstein motion control GmbH

Geschäftsfeld tool drives

Anschrift Walter-Wittenstein-Straße 1

D-97999 Igersheim / Germany Tel: +49(0)7931 - 493-0 Fax: +49(0)7931 - 493-10915

e-mail: info-tooldrives@wittenstein.de

erklären hiermit in alleiniger Verantwortung, dass das bezeichnete Produkt im Originalzustand

Bezeichnung: Control Box

Typ: CB-T07D1N1N8B65M1A

CB-X ...

mit den Anforderungen der folgenden gültigen EG-Richtlinie

2006/95/EG Niederspannungsrichtlinie

2004/108/EG EMV-Richtlinie

2011/65/EU Richtlinie zur Beschränkung der Verwendung bestimmter

gefährlicher Stoffe in Elektro- und Elektronikgeräten

übereinstimmt und somit die Anforderungen erfüllt. Die Gültigkeit der EG-Konformitätserklärung erlischt bei Verwendung von Ersatzteilen, die nicht von WITTENSTEIN motion control GmbH Geschäftsfeld tool drives zugelassen sind. Control Boxen der oben genannten Baureihe tragen das CE-Zeichen.

Folgende harmonisierte Normen wurden angewandt:

DIN EN 60664-1 Isolationskoordination für elektrische Betriebsmittel in

Niederspannungsanlagen – Teil 1: Grundsätze, Anforderungen

und Prüfungen

DIN EN 60529:1991

+ A1:2000

Schutzarten durch Gehäuse (IP-Code)

DIN EN 60068-2-6:2008 Umgebungseinflüsse Teil 2-6: Prüfverfahren - Prüfung Fc:

Schwingungen (sinusförmig)

DIN EN 60068-2-78:2001

(2002-09)

Umgebungseinflüsse Teil 2-78: Prüfungen; Prüfung Cab:

Feuchte Wärme, konstant

Document No.: 4097-0030362 Rev.: 01

Seite 1 von 2

motion control

DIN EN ISO 13732-1: 2008-12 Ergonomie der thermischen Umgebung – Bewertungsverfahren für menschliche Reaktionen bei Kontakt mit heißen Oberflächen – Teil 1: Heiße Oberflächen

Igersheim, 27.03.2012

Ort und Datum der Ausstellung

Dr. Bernd Schimpf Geschäftsführer

WITTENSTEIN motion control GmbH Bereich Industrie und tool drives

Land Sig

Control Box

Anhang

Platz für Ihre Notizen:

Diese Dokumentation ist urheberrechtlich geschützt.

Alle Rechte, auch die der fotomechanischen Wiedergabe, der Vervielfältigung und der Verbreitung mittels besonderer Verfahren (zum Beispiel Datenverarbeitung, Datenträger und Datennetze), auch teilweise, behält sich die ToolDrives GmbH & Co. KG vor.

Inhaltliche und technische Änderungen vorbehalten.

ToolDrives GmbH & Co. KGKöniglicher Wald 6
33142 Büren

Tel.: +49 2951 70798 50 Mail: info@tooldrives.de

